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Species spanning the animal kingdom have evolved extravagant and costly

ornaments to attract mating partners. Zahavi’s handicap principle offers an ele-

gant explanation for this: ornaments signal individual quality, and must be

costly to ensure honest signalling, making mate selection more efficient. Here,

we incorporate the assumptions of the handicap principle into a mathematical

model and show that they are sufficient to explain the heretofore puzzling

observation of bimodally distributed ornament sizes in a variety of species.
1. Background
Darwin was the first to suggest that both natural and sexual selection play a role in

the evolution of mating displays [1]. Natural selection is the shift in population

traits based on an individual’s ability to survive and gather resources, while

sexual selection is the shift in population traits based on an individual’s ability

to mate with more or better partners. Natural selection alone cannot explain orna-

ments because they hinder survival and provide little to no benefit to the

individual [2–4]. Darwin hypothesized that female preference for exaggerated

mating displays drives the evolution of male ornamentation, but he was unable

to explain why females prefer features which clearly handicap the males.

Zahavi’s handicap principle attempts to resolve the paradox proposed by

Darwin [5]. It argues that, because costly ornaments hinder survival, only the

highest quality individuals can afford significant investment in them. Thus,

the cost (often correlated with size) of an ornament truthfully advertises the

quality of an individual, which makes mate selection easier. There is a large

body of evidence that ornaments are indeed costly to the bearer (e.g. [6–8]),

that ornaments are honest signals of quality (e.g. [9,10]), and that females

prefer mates with larger ornaments (e.g. [11–13]).

A variety of theoretical approaches have been used to model the handicap

principle [4,14–17]. Broad categories include game theoretical approaches

(e.g. [18,19]), quantitative genetics (e.g. [20,21]) and phenotypic dynamics (e.g.

[22,23]). Borrowing and expanding upon ideas from all three methods, we pro-

pose a new dynamical systems approach to understanding the evolution of

ornaments within a population. Our model differs from some that search for a

single evolutionarily stable strategy (ESS) (e.g. [19]) in that we do not require a

unique phenotype for a particular male quality; our method allows for the possi-

bility that an optimal distribution of strategies may emerge for a population—even

a population of equal quality males.

Curiously, it has been observed that ornament sizes frequently have bimodal

distributions, resulting in distinct small- and large- ‘morphs’ in many ornamen-

ted species (e.g. [24–26]). Figure 1 illustrates a classic example of ornament

dimorphism, the horned dung beetle [24]. While in some cases researchers have

identified genetic and environmental factors associated with ornament size vari-

ation (e.g. [27,28]), the splitting into two distinct large- and small-ornamented

subpopulations (morphs) remains a contentious area of study.

Some evolutionary theories suggest that variety within the sexes may be

because of varied mating strategies such as mimicry, sneaking or fighting
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Figure 1. Example of a dimorphic ornament: dung beetles with differing
horn lengths (Onthophagus taurus, Coleoptera: Scarabaeidae), reproduced
with permission from [24].
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[29,30]. However, our model suggests that the handicap prin-

ciple alone may be sufficient to explain the origin of the

observed ornament bimodality.
timetime

Figure 2. Model derivation and behaviour. (a) Example individual potential
function, singly peaked at aopt. We use a quadratic function. (b) Example
social potential function, antisymmetric about the population mean �a. We
use an antisymmetrized power law such that the shape depends on the
social sensitivity g (blue dashed is g ¼ 0.5; maroon solid is g ¼ 1.5).
(c) Example total reproductive potential function at equilibrium for g , 1.
There are two local maxima corresponding to two distinct morphs, with the
larger ornament morph having the highest potential (here g ¼ 0.5).
(d ) Example total potential function at equilibrium for 1 , g , 2. There
are two local maxima corresponding to two distinct morphs, with the smaller
ornament morph having the highest potential (here g ¼ 1.5). Note that the
potential landscape is distinct for each population representative, and represen-
tatives are not assumed to be identical. (e) Evolution of N ¼ 100 population
representatives over time for g ¼ 0.5 and ( f ) g ¼ 1.5. The initial conditions
were sampled randomly from a normal distribution with mean 0.75 and stan-
dard deviation 0.25. The optimal ornament size aopt ¼ 1.0, maximum
simulation time tmax ¼ 50, time-scaling constant c ¼ 1.0, and s ¼ 1/2.
(Online version in colour.)
2. Model
With the goal of examining the quantitative implications of the

handicap principle, we construct a minimal dynamical systems

model for the evolution of extravagant and costly ornaments on

animals. This proposed model incorporates two components of

ornament evolution: an intrinsic cost of ornamentation to an

individual (natural selection), and a social benefit of relatively

large ornaments within a population (sexual selection). We

show that on an evolutionary time scale, identically healthy ani-

mals can be forced to split into two morphs, one with large

ornaments and one with small.

To express our model, we introduce the idea of a ‘reproduc-

tive potential’ w. This can be thought of as similar to fitness,

though our definition differs from the fitness function commonly

used in the replicator equation [22,31] (we make the relationship

between the two explicit in the electronic supplementary

material). Over long time scales, the effect of evolution is to

select for individuals with higher reproductive potential.

Consider an individual reproductive potential w(ind) of a

solitary male with ornament size a (e.g. a deer with ornamen-

tal antlers). Some ornaments have practical as well as

ornamental value (e.g. anti-predation [32,33]), but have a

deleterious effect beyond a certain size. We therefore expect

that there exists an optimal ornament size (possibly zero),

for which individual potential is maximum, and thus take

this to be a singly peaked function of ornament size. For

simplicity, we assume the quadratic form1

wðindÞ ¼ að2aopt � aÞ: ð2:1Þ

Following the handicap principle, we expect the optimal

ornament size aopt ¼ aopt(h) to be an increasing function of

‘intrinsic health’ h—i.e. healthier individuals can afford

larger ornaments. See figure 2a for the general shape of the

individual reproductive potential function.

Next, we consider a social reproductive potential w(soc) that

captures the effects of competition for partners (i.e. sexual

selection). We assume social potential is an increasing function

of ornament size2 because sexual selection often favours
larger or more elaborate ornaments [12]. For simplicity, and

motivated by the ubiquity of power laws in nature [34,35],

we choose social potential to be a power of the difference

between a male’s ornament size and the average herd orna-

ment size. To ensure monotonicity, we force the social

reproductive potential to be antisymmetric about the average

ornament size. The social potential is then

wðsocÞ ¼ sgnða� �aÞja� �ajg, ð2:2Þ

where the positive parameter g quantifies the rate at which

deviations from the mean influence reproductive potential,

sgn is the sign function, and �a represents the average orna-

ment size in the population. Loosely speaking, the parameter

g tunes female choice; we take this ‘female choice’ parameter

to be effectively constant because female choice may evolve

on a slower time scale than male ornamentation [21]. Refer

to figure 2b for an example of the social reproductive

potential function.

Because both natural and sexual selection play a role in

the evolution of ornaments [21], we take total reproductive

http://rspb.royalsocietypublishing.org/
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potential to be the weighted average

w ¼ swðsocÞ þ ð1� sÞwðindÞ, ð2:3Þ

where s tunes the relative importance of competitive social

effects (sexual selection) versus individual effects (natural

selection). We show in the electronic supplementary material

that a weighted product [36] produces identical qualitative

results, so we focus on this case for simplicity of calculations.

See figure 2c,d for examples of total potential functions.

Assuming that evolutionary forces optimize overall

reproductive potential at a rate proportional to the marginal

benefit of ornamentation, ornament sizes will follow

the dynamics

da
dt
¼ c

@w

@a
, ð2:4Þ

with time-scaling parameter c . 0. Note that this model

does not presume that individual ornaments explicitly

change size: the ‘phenotype flux’ da/dt is simply a way of

describing how the distribution of ornament sizes in a large

animal population changes over long time scales as a result

of selection processes.

This results in a piecewise-smooth ordinary differential

equation for the ornament size flux:

da
dt
¼ c sg 1� 1

N

� �
ja� �ajg�1 þ 2ð1� sÞðaopt � aÞ

� �
, ð2:5Þ

where N is the population size. Plugging (equation (2.5)) into

the continuity equation yields a replicator equation for the

evolution of the ornament size distribution (see the electronic

supplementary material).
3. Results
(a) Numerical exploration
For biologically relevant values of the social sensitivity par-

ameter g, our model predicts stratification into distinct

phenotypes for a population of identically healthy individ-

uals (i.e. individuals of identical quality). See figure 2e,f for

the time evolution of ornament size for two representative

values of g.

For 0 , g , 1, the ornament sizes stratify into large-

ornament and small-ornament groups, with the majority

possessing a large-ornament ‘morph.’ For 1 , g , 2, the popu-

lation stratifies into large- and small-ornament morphs, but the

majority have small ornaments. The case g � 2 is not a reason-

able option because we have selected a quadratic form for the

local approximation of the individual potential function; any

power g exceeding 2 implies sexual selection is the dominant

evolutionary force even for extremely large ornaments, an

unreasonable assumption.

These qualitative results are consistent for all aopt and 0 �
s , 1. While for clarity we have presented predictions of a

specific minimal model, the qualitative results hold for a

wide range of models. See the Discussion for the generality

of model predictions.
(b) Analytical results
As numerical integration shows that the uniform and

two-morph steady states are of interest, we concentrate our

analysis on these equilibria. However, it can also be shown
graphically that uniform and two-morph steady states

are the only possible solutions for a wide range of potential

functions (see the electronic supplementary material).

(i) Uniform steady state
To investigate the uniform equilibrium with an identi-

cally healthy population, we set a ¼ �a producing the single

ordinary differential equation,3

da
dt
¼ 2cð1� sÞðaopt � aÞ: ð3:1Þ

The steady state (i.e. da/dt ¼ 0) is clearly a ¼ aopt. Linear

stability analysis within this identical ornament manifold

shows the fixed point a ¼ aopt is stable for all g, but numerical

simulation suggests that the uniform fixed point is only

stable for g � 2. To resolve this apparent discrepancy, we

investigate the uniform fixed point of (equation (2.5)) in the

continuum limit, and evaluate stability without restriction to

the uniform manifold. We are then able to find g-dependence

that agrees with simulations (details in the electronic

supplementary material).

(ii) Two-morph steady state
To investigate the two-morph equilibrium, we assume all

males have one of two ornament sizes a1 and a2. Taking x to

be the fraction of males with ornament size a1, and N!1,

the dynamical system becomes

da1

dt
¼ c½sgðð1� xÞja1 � a2jÞg�1 þ 2ð1� sÞðaopt � a1Þ�

da2

dt
¼ c½sgðxja1 � a2jÞg�1 þ 2ð1� sÞðaopt � a2Þ�:

9>>=
>>; ð3:2Þ

There exists one two-morph steady state (i.e. solution to

da1/dt ¼ da2/dt ¼ 0):

a1 ¼ aopt þ
sg

2ð1� sÞ

� �1=ð2�gÞ

� ð1� xÞj ð1� xÞgx� xg þ x1�g

ð1� xÞx j1=ð2�gÞ
 !g�1

a2 ¼ aopt þ
sg

2ð1� sÞ

� �1=ð2�gÞ

� xj ð1� xÞgx� xg þ x1�g

ð1� xÞx j1=ð2�gÞ
 !g�1

:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð3:3Þ

Figure 3a,b shows how two-morph equilibria vary with the

morph fractionation x. Within the shaded region, the fixed

point is stable. To be clear, the model predicts that a bimodal

population will emerge, with the fraction x of the individuals

within the population possessing ornaments of size a1. We

are not claiming that a proportion x of populations will

evolve to ornament size a1.

The eigenvalues for the linearized system constrained

to this two-morph manifold are l1 ¼ �2ð1� sÞ=s and

l2 ¼ 2ðg� 2Þð1� sÞ=s. Clearly, the two-morph equilibrium is

stable (within the two-morph manifold) for 0 , g , 2 and

unstable for g . 2, when l2 . 0. Curiously, the stability of

the two-morph equilibrium does not depend on x, the morph

fractionation. This presents an apparent problem because

numerical simulation suggests that only certain ranges of x
are stable (figure 3c). Similarly to the uniform fixed point

analysis, we investigate the fixed points of the model in the

http://rspb.royalsocietypublishing.org/
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Figure 3. Stability regions for two-morph steady states (N ¼ 100, s ¼ 1/2).
The ornament size for morph 1 is blue (dashed line), and the ornament size
for morph 2 is maroon (solid line). The shaded regions are stable. (a) Two-
morph steady state for various morph fractionation x and g ¼ 0.5. (b) Two-
morph steady state for various morph fractionation x and g ¼ 1.5.
(c) Analytical stability region (grey shading) for finite N model within
two-morph manifold with numerical stability region (dots) superimposed.
(d ) Analytical stability region (grey shading) from continuum model with
numerical stability region (dots) superimposed. (Online version in colour.)
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of model with N ¼ 1000 individuals, g ¼ 0.5, s ¼ 1/2 (Kendall’s rank
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shows analytical solution. Marginal histograms illustrate that normal distribution
of aopt ( proxy for intrinsic health) leads to bimodal distribution of a. (c) Normal-
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continuum limit, and evaluate stability without restriction to

any manifold. We are then able to find x-dependence that

agrees well with simulations (figure 3d; details in the electronic

supplementary material).

ized histogram for Arctic charr brightness [37] (N ¼ 20, KDE bandwidth ¼
0.01). (d ) Normalized histogram for dung beetle horn length [38] (N ¼ 644,
KDE bandwidth ¼ 0.2). (Online version in colour.)
4. Model validation
We now revisit our simplifying assumption that all males are

equally healthy. More realistically, we allow the intrinsic

health h to be taken from some distribution (perhaps set by gen-

etic, developmental or environmental factors). Suppose this

distribution is such that the individual optimal ornament size

aopt(h) is normally distributed. Then, the stable two-morph

steady state changes from a weighted sum of perfectly narrow

Dirac delta functions to a distribution roughly resembling

the sum of two Gaussians—usually a bimodal distribution.

Marginal histograms in figure 4a,b show examples of steady

states with varied intrinsic health.

These examples resemble data from many species that grow

ornaments. Figure 4c,d shows two examples of real-world orna-

ment distributions that exhibit bimodality. Note that we do

not expect the exact shape of the real-world distributions to

match our simulations because the measured quantities will

not necessarily be linear in cost. However, bimodality will be

preserved regardless of the measured quantity.

In a literature search [11,12,26,37–49], we found a number

of published datasets showing size distributions of suspected

ornaments; 23 were of sufficient quality for testing agreement

with this model. In 13 of those datasets, we found some evi-

dence for rejecting the hypothesis of unimodality: the data

were more consistent with a mixture of two or more Gaussian

distributions than with a single Gaussian. In seven datasets,

we found stronger evidence: non-parametric tests rejected

the hypothesis of unimodality. Note that other datasets

were not inconsistent with bimodality, but small sample
sizes often limited the power of statistical testing. See the elec-

tronic supplementary material for histograms and statistical

tests of additional datasets.
5. Discussion
(a) Implications for honest signalling
Assuming this model adequately represents the handicap prin-

ciple, we may ask if ornament size really does honestly advertise

quality. In other words, if a female can choose among all the

males, is she able to detect the healthiest (or weakest) males

simply by looking at ornament size? Again taking the optimal

ornament size aopt to be normally distributed, we examine the

Kendall rank correlation between intrinsic health (as indicated

by our proxy aopt) and equilibrium ornament size.

We find that the advertising is mostly honest, at least for

large enough variance in health. Both observational and

experimental work supports this finding [9]. Figure 4a,b
shows examples of ornament size versus intrinsic health

based on our model.
(b) Generality
It is natural to wonder about the generality of the results we

have presented here. For a reasonable set of potential func-

tions (described below), the only possible stable equilibria

http://rspb.royalsocietypublishing.org/
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are multimodal distributions of ornament size. The following

are the requirements for our reasonable potential functions.

(i) Individual effects dominate potential for large-

ornament sizes. Specifically,

ð1� sÞ @
@a

wðindÞ
����

���� . s
@

@a
wðsocÞ

����
���� as a! 1:

This prevents ornament size from growing without

bound, as can occur in model (2.5) for g � 2.

(ii) Social effects dominate potential for at least some

range of ornament sizes greater than the population

mean. In other words,

ð1� sÞ @
@a

wðindÞ
����

���� , s
@

@a
wðsocÞ

����
����,

for at least some range of a . �a. Failure to meet this cri-

terion could be considered ‘false’ ornamentation, as in

model (2.5) for g ¼ 1.

Assuming the potential functions are continuous,4 these

criteria guarantee that two or more morphs will emerge

(see the electronic supplementary material for details).

One benefit of our modelling approach is that the evolutio-

narily optimal distribution we predict is independent of

the particular mechanism(s) used to maintain phenotype

diversity (which might include various combinations of

genetic, epigenetic, environmental or other cues; see the elec-

tronic supplementary material for more discussion of this

point). Of course, our model is not the only one that can

show bimodality of traits. We have provided one simple

mechanism for explaining such polymorphism, but other

effects (e.g. intra-sexual selection, over-dominance, negative

frequency-dependent selection) might also work in concert or

be able to independently explain observed data.

6. Conclusion
The independent evolution of costly ornamentation across

species has puzzled scientists for over a century. Several gen-

eral evolutionary principles have been proposed to explain
this phenomenon. Among the prominent hypotheses is the

handicap principle, which posits that only the healthiest indi-

viduals can afford to grow and carry large ornaments,

thereby serving as honest advertising to potential mates.

We base a minimal model on this idea and find that, surpris-

ingly, it predicts two-morph stratification of ornament size,

which appears to be common in nature.

Importantly, the two morphs both have ornament sizes

larger than the optimum for lone individuals. This means

that the population survival potential, as indicated by the

population average of individual potential wðindÞ, is reduced.

Owing to the presence of ornaments, we conclude that the evol-

utionary benefits of honest advertising must outweigh the net

costs of ornamentation when the displays exist in nature.
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Endnotes
1This is a generic form for an arbitrary smooth peaked function
approximated close to its peak.
2This assumption applies most naturally to inter-sexual selec-
tion, ignoring alternative reproductive strategies associated with
intra-sexual selection (e.g. cryptic males).
3For g � 1, we set w(soc) ¼ 0 before setting a ¼ �a to avoid an
undefined right-hand side of (equation (2.5)).
4This is a stronger requirement than necessary. Actually, we only
require that the two-sided limits exist everywhere.
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